

DNS Infrastructure Distribution

Steve Gibbard
Packet Clearing House
http://www.pch.net/
scg@pch.net

Introduction

- Previous talk on importance of keeping critical infrastructure local.
- Without local infrastructure, local communications are subject to far away outages, costs, and performance.
- Oritical infrastructure includes DNS.
- If a domain is critical, so is everything above it in the hierarchy.
- Sri Lanka a case in point.

Example countries

- Kenya
 - © Exchange point, root server, ccTLD server, all external connectivity by satellite.
- Pakistan:
 - Root server, no exchange point, no TLDs.

Kenya

Ø Kenya:

- Cocal exchange point in Nairobi.
- Local root server in Nairobi.
- Compare the control of the contro
- No external fiber.
- Ducal users accessing local services in the .ke domain have their queries stay local and should be reliable. Queries to non-local TLDs depend on satellite connectivity, which may not be working.

Pakistan

- Pakistan:
 - Description Local root server (for at least one ISP).
 - O No TLDs.
 - 7.pk hosted entirely in the US.
 - Root queries may get answered locally, but get followed by long distance queries for .pk, ten timezones away.
 - O.Com queries go to Singapore or Europe, a bit closer.
 - Single fiber connection, so if that breaks, no TLD lookups are possible. Root server not a huge benefit.

Root server placement

- Currently 112 root servers(?)
 - Assuming www.root-servers.org is accurate.
 - Number increases frequently.
- Operated by 12 organizations.
- 7 13 IP addresses.
 - (At most) 13 servers visible from any one place at any one time.
 - Six are anycasted.
 - Four are anycasted in large numbers.
- All remaining unicast roots are in the Bay Area, Los Angeles, or Washington, DC.

Distribution by continent

- 738 in North America:
 - 79 in Bay Area, 9 in DC Area, 5 in Los Angeles.
 - Only non-costal roots in US are in Chicago and Atlanta.
- 735 in Europe:
 - Clusters of 4 each in London and Amsterdam, Europe's biggest exchanges.
 - ©Even throughout rest of Western Europe.

Distribution by continent...

- 26 in Asia (excluding Middle East):
 - 75 in Japan.
 - 3 each in India, Korea, and Singapore.
 - 2 each in Hong Kong, Jakarta, and Beijing.
 - South Asia an area of rapid expansion.
- 76 in Australia/New Zealand:
 - 72 in Brisbane.
 - 7 1 each in Auckland, Perth, Sydney, and Wellington.

Distribution by continent...

- 5 in Middle East:
 - 7 1 each in Ankara, Tel Aviv, Doha, Dubai, and Abu Dhabi.
- 3 in Africa:
 - 72 in Johannesburg
 - 7 1 in Nairobi -- 1 more being installed.
 - Very little inter-city or inter-country connectivity.
- 7 4 in South America:
 - 2 in Sao Paolo.
 - One in Brasilia.
 - Santiago de Chile.

Global root server map

Redundant root coverage

Root server expansion

- Four of twelve root server operators actively installing new roots wherever they can get funding.
- 7 112 root servers is a big improvement over the 13 that existed three years ago.
- Two operators (Autonomica and ISC) are especially prolific.
 - Funding sources are typically RIRs, local governments, or ISP associations.
 - Climitations in currently unserved areas are generally due to a lack of money.

Fs and Is

- In large portions of the world, the several closest roots are Is and Fs.
 - At most two root IP addreses visible locally; others far away.
 - ©Gives poorly connected regions less ability to use BIND's failure and closest server detection mechanisms.
 - Non-BIND DNS implementations may default to far away roots.
 - Should all 13 roots be anycasted evenly?
 - CAIDA study from 2003 assumed a maximum of 13 locations -- not really relevant anymore.

Big clusters

- Lots of complaints about uneven distribution.
- Only really a concern if resources are finite.
- Carge numbers in some places don't prevent growth in others.
- Bay Area and DC clusters seem a bit much, but sort of match topology.
- Western Europe's dense but relatively even distribution may be exactly right.
- Two per internally connected region perhaps a good goal for everywhere.

TLD Distribution

- Like the root, Locally used TLDs need to be served locally.
 - Cocally used TLDs: Local ccTLD; any other TLDs in common use.
 - Regions don't need ALL TLDs.

Methodology

- OGet name server addresses for TLDs
- Assume everything in a /24 is in the same place or set of places.
 - Bad assumption for UUNet servers. Didn't find any other problems. May have missed some.
 - 7634 /24s contain name servers for TLDs. 138 host multiple TLDs; over 70 in RIPE's case.
- Figure out where those subnets are:
 - Automated geolocation systems tended to be wrong.
 - Do lots of traceroutes, and ask lots of questions.

Other sources

- UltraDNS considers its locations confidential, but supplied some information. Additional info from Afilias's .Net application and other sources. Verified with traceroutes. I'm told I missed some sites.
- In general, TLD operators were very helpful. Thanks!

Subnets with 16+ TLDs

193.0.12/24	RIPE	73	Amsterdam
192.36.125/24	SUNET/NS.SE	38	Stockholm
204.152.184/24	ISC	37	Palo Alto
198.6.1/24	UUNet	31	Various US locations
137.39.1/24	UUNet	25	Various US locations
147.28.0/24	PSG	23	Seattle
204.74.112/24	UltraDNS	21	Anycast
204.74.113/24	UltraDNS	20	Anycast
192.93.0/24	NIC.FR	19	Paris
204.61.216/24	PCH	17	Anycast
199.7.67/24	UltraDNS	16	Anycast
193.0.0/24	RIPE	16	Amsterdam

gTLD Distribution: .Com/.Net

- Com/.Net:
 - Well connected to the "Internet Core." Servers in Canada, Japan, Korea, Netherlands, Singapore, Sweden, UK; US states of California, Florida, Georgia, Virginia, and Washington.
 - Non-Core locations -- Sydney, Sao Paolo, Brasilia.

.Com/.Net map

gTLD Distribution: .Org/.Info/.Coop

- Org/.Info/.Coop:
 - Considered confidential. Data may be incomplete.
 - Significantly fewer publicly visible servers, almost all in "Internet Core:" Hong Kong, UK, South Africa; US: California, Illinois, and Virginia.
 - Only one public location in Europe. No Australia/New Zealand.
 - South Africa and India outside "Internet Core."
 - Other locations reachable only by caching resolvers of some major ISPs. Unspecific claims. Impact hard to judge.

.Org/.Info/.Coop Map

A few other gTLDs:

- O.Gov: Canada, Germany; US states of California, Florida, New Jersey, Pennsylvania, Texas.
- 7 .Edu: Netherlands, Singapore, US states of California, Florida, Georgia, Virginia.
- Int: Netherlands, UK, California.
- Diz: Australia, Hong Kong, Netherlands, New Zealand, Singapore, UK, US states of California, Florida, Georgia, New York, Virginia, Washington.
- Complete listing in the paper.

Where should gTLDs be?

- Presumably depends on their market.
- If it's ok for large portions of the world to not use the gTLDs, it's ok for those gTLDs to not be hosted there.
- Really a question for ICANN and the registries.
- Int's lack of international coverage seems strange.

ccTLD Distribution:

- The answers to where various ccTLDs should work seem much more obvious.
 - Working in their own regions a must.
 - Working in the Internet core, and in regions their region communicates with a big plus.
- Just over 2/3 of ccTLDs are hosted in their own countries.
 - (but a lot of those that aren't are for really tiny countries).

Countries with local ccTLDs

ccTLDs not slaved in core

- 7 16 ccTLDs aren't slaved in the global core.
- If their regions get cut off, those ccTLDs won't be visible to the rest of the world.
- 7 Is this an issue?
 - Certainly, if these ccTLDs are used to address resources outside their regions or not connected to the core the same way.
 - A cause of misleading failure modes for incoming communications. A clear RFC 2182 violation.
 - Not an issue if communications from outside don't matter.

ccTLDs not hosted in core

- .BB -- Barbados
- .BD -- Bangladesh
- 7 .BH -- Bahrain
- 7 .CN -- China
- .EC -- Ecuador
- 7 .GF -- French Guiana
- .KG -- Kyrgyzstan
- 7 .KW -- Kuwait
- MP -- NorthernMariana Islands

- .MQ -- Martinique
- 7 .PA -- Panama
- .PF -- French Polynesia
- QA -- Qatar
- SR -- Suriname
- .TJ -- Tajikistan
- 7.ZM -- Zambia

Local peering caveat

- Cocal traffic has to be kept local before keeping DNS local is much of an issue.
 - If DNS queries have to leave the region and come back, that doubles the problems created by queries merely needing to leave.
 - This generally requires either a local exchange point or monopoly transit provider.
- © Examples used here have already taken care of that.
- I haven't done that research on the rest of the world yet.

Thanks!

Corrections and updates would be appreciated

Steve Gibbard
Packet Clearing House
scg@pch.net