
2006 © SWITCH

What's New in Network Configuration?

Simon Leinen <simon@limmat.switch.ch>
Andy Bierman <ietf@andybierman.com>

mailto:simon@limmat.switch.ch
mailto:ietf@andybierman.com

2006 © SWITCH 2

NETCONF History
• 2002 IAB Network Management Workshop (see RFC

3535)
– SNMP used for monitoring, but not configuration
– SNMP MIBs lag (years) behind feature implementation
– SNMP doesn’t distinguish config from non-config data
– Operators use (proprietary) CLI for many tasks
– In particular those involving configuration(s)
– Problems with unstable and hard-to-parse CLI

2006 © SWITCH 3

IETF NETCONF WG
• Chartered May 2003

– based on “XMLCONF” proposal and Juniper's XML-based “Junoscript”
• Charter: Standardize XML-based protocol for network configuration
• Web page: http://www.ops.ietf.org/netconf/
• Chairs: Andy Bierman, Simon Leinen

http://www.ops.ietf.org/netconf/

2006 © SWITCH 4

NETCONF WG Achievements

Four documents with the RFC Editor:
– NETCONF Configuration Protocol
– NETCONF over SSH (TCP port 830) – mandatory to implement
– NETCONF over BEEP (TCP port 831)
– NETCONF over SOAP (TCP ports 832/833 HTTP/BEEP)

Finally escaped from “IANA action required” state last night...

2006 © SWITCH 5

NETCONF Basics: RPC Model

• NETCONF uses its own RPC mechanism instead of XML-RPC or
some other pre-existing RPC standard

– Wanted the same RPC across all transports
– Existing mechanisms did not provide the data types and error

info that NETCONF needs
• Vendors can define their own RPC methods (using own

namespaces)

Manager Agent

<rpc>

<rpc-reply>

2006 © SWITCH 6

RPC Methods

Standard RPC Message Format
• <rpc message-id="101“ xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<some-method>
<!-- method parameters here... -->

</some-method>
</rpc>

Vendor RPC Message Format
• <rpc message-id="102“ xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<my-own-method xmlns="http://example.net/me/my-own/1.0">
<my-first-parameter>14</my-first-parameter>
<another-parameter>fred</another-parameter>

</my-own-method>
</rpc>

2006 © SWITCH 7

Example <hello> Message

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>

<capability>
urn:ietf:params:xml:ns:netconf:base:1.0

</capability>
<capability>
urn:ietf:params:xml:ns:netconf:capability:startup:1.0

</capability>
<capability>
http:/example.net/router/2.3/myfeature

</capability>
</capabilities>
<session-id>1043</session-id>

</hello>

2006 © SWITCH 8

Base Protocol Operations

Force another session to closekill-session
Cause your session to closeclose-session
Retrieve config and/or state dataget
Stop exclusive write access of a configunlock
Start exclusive write access of a configlock
Remove all contents of a configdelete-config
Copy contents of one config to anothercopy-config
Edit some or all of a configurationedit-config
Retrieve some or all of a configurationget-config

DescriptionName

2006 © SWITCH 9

Optional Protocol Operations

validate

candidate

candidate
Capability

Perform a syntax check and
optionally a referential integrity
check on the specified config

validate

Clear the <candidate>
configuration

discard-
changes

Commit <candidate> to
<running> configuration

commit
DescriptionName

2006 © SWITCH 10

Configuration Locking

• NETCONF supports global locking
– Exclusive access to an entire configuration datastore is granted

to one user even if the user only has permission to alter some of
the configuration data

• Partial locking is coming
– This feature depends on how data is named (and other factors)

and the WG could not agree in time so it was shelved
• Lock implementation in mandatory but lock use is optional

– Provides some really interesting failure modes :-)

2006 © SWITCH 11

<edit-config>

• 4 edit modes (create, merge, replace, delete)

Portion of the configuration to editconfig

Values (stop-on-error, continue-on-error,
rollback-on-error); Default (stop-on-error)

error-option
Values (test-then-set, set); Default (set)test-option

Default edit mode; Default (merge)
Values (merge, replace, none)

default-
operation

Configuration datastore to edittarget
DescriptionParameter

2006 © SWITCH 12

<edit-config> Example
<rpc message-id="101“ xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<edit-config>
<target><running/></target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<top xmlns="http://example.com/schema/1.2/config">
<interface xc:operation="replace">
<name>Ethernet0/0</name>
<mtu>1500</mtu>
<address>
<name>1.2.3.4</name>
<prefix-length>24</prefix-length>

</address>
</interface>

</top>
</config>

</edit-config>
</rpc>

2006 © SWITCH 13

Configuration Data
• Data is divided into 2 categories

– Configuration data is loosely defined as “the information
needed by a device to achieve its desired running state” and
it is saved across a device reboot

– Status and statistical data is loosely defined as “everything
else”

– This is done to make “diff” operations easier
• A Configuration Datastore is a conceptual collection of

all the configuration data needed for a particular
network device

– <candidate>, <running>, and <startup> are the standard
configuration datastores

2006 © SWITCH 14

Standard Configuration Datastores

– <candidate>
• A scratchpad configuration used to collect edits to be applied

all at once with a <commit> operation
Support for this configuration is optional

– <running>
The current operational configuration
All devices must support this configuration

– <startup>
The configuration to be used upon the next reload
• Only devices that require the <running> configuration to be

manually copied to non-volatile storage support this
configuration

2006 © SWITCH 15

Named Configuration Datastores

– An optional feature allows a configuration datastore
named by a Universal Resource Locater (URL) to be
used in protocol operations

• local: file://configs/my-config.xml
• remote: https://config.example.com/device-X

– The ‘url’ capability identifies which protocols the
agent will allow in the URL syntax

– Remote configuration editing is possible but not
encouraged

– Remote to remote file copy is not allowed

2006 © SWITCH 16

Summary

• NETCONF provides a low-level programmatic interface to
manipulate network device configurations

– Designed by network element vendor engineers to work on all
the major router platforms

• NETCONF is content-neutral and only requires data model content
to be well-formed XML

– High-level object or service oriented model-driven systems can
be layered on top

2006 © SWITCH 17

Active NETCONF WG Work

• Notifications – to notify manager of asynchronous events
– Useful (not just) for configuration
– Two competing proposals merged at July 2006 interim
– Subscriptions based on event streams (similar to syslog

facilities) and filters

2006 © SWITCH 18

Possible Future Work

• Standard Access Control Mechanism (depends on
data model)

• Granular locking (depends on data model)
• Data Modeling

– Standard data model for device (maybe “just” “router”)
configuration?

– Start with common conventions for things we think we
all understand (such as an IP address)?

– Restrict ourselves to configuration, or try to grandfather
e.g. SNMP MIBs...?

• Software image management

2006 © SWITCH 19

Possible Future O&M Work

Replace entire IETF Network Management “stack” with
something based on NETCONF?
– Note that SNMP has been mapped to SSH (ISMS WG)
– Some vendors would prefer not to implement SNMP

Do operators here think this would be useful/worthwhile?

	What's New in Network Configuration?
	NETCONF History
	IETF NETCONF WG
	NETCONF WG Achievements
	NETCONF Basics: RPC Model
	RPC Methods
	Example <hello> Message
	Base Protocol Operations
	Optional Protocol Operations
	Configuration Locking
	<edit-config>
	<edit-config> Example
	Configuration Data
	Standard Configuration Datastores
	Named Configuration Datastores
	Summary
	Active NETCONF WG Work
	Possible Future Work
	Possible Future O&M Work

