

What's New in Network Configuration?

Simon Leinen < simon@limmat.switch.ch>
Andy Bierman < ietf@andybierman.com>

NETCONF History

- 2002 IAB Network Management Workshop (see RFC 3535)
 - SNMP used for monitoring, but not configuration
 - SNMP MIBs lag (years) behind feature implementation
 - SNMP doesn't distinguish config from non-config data
 - Operators use (proprietary) CLI for many tasks
 - In particular those involving configuration(s)
 - Problems with unstable and hard-to-parse CLI

IETF NETCONF WG

The Swiss Education & Research Network

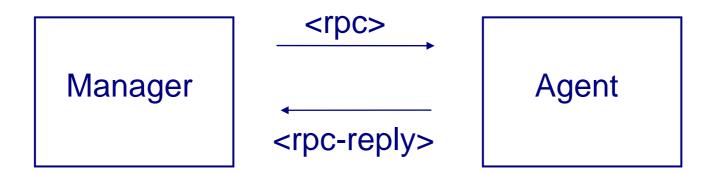
- Chartered May 2003
 - based on "XMLCONF" proposal and Juniper's XML-based "Junoscript"
- Charter: Standardize XML-based protocol for network configuration
- Web page: http://www.ops.ietf.org/netconf/
- Chairs: Andy Bierman, Simon Leinen

NETCONF WG Achievements

The Swiss Education & Research Network

Four documents with the RFC Editor:

- NETCONF Configuration Protocol
- NETCONF over SSH (TCP port 830) mandatory to implement
- NETCONF over BEEP (TCP port 831)
- NETCONF over SOAP (TCP ports 832/833 HTTP/BEEP)


Finally escaped from "IANA action required" state last night...

NETCONF Basics: RPC Model

The Swiss Education & Research Network

- NETCONF uses its own RPC mechanism instead of XML-RPC or some other pre-existing RPC standard
 - Wanted the same RPC across all transports
 - Existing mechanisms did not provide the data types and error info that NETCONF needs
- Vendors can define their own RPC methods (using own namespaces)

RPC Methods

The Swiss Education & Research Networ

Standard RPC Message Format

```
    <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
         <some-method>
         <!-- method parameters here... -->
         </some-method>
         </rpc>
```

Vendor RPC Message Format

```
    <rpc message-id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
        <my-own-method xmlns="http://example.net/me/my-own/1.0">
        <my-first-parameter>14</my-first-parameter>
        <another-parameter>fred</another-parameter>
        </my-own-method>
        </rpc>
```

Example <hello> Message

The Swiss Education & Research Network

```
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <capabilities>
   <capability>
     urn:ietf:params:xml:ns:netconf:base:1.0
   </capability>
   <capability>
     urn:ietf:params:xml:ns:netconf:capability:startup:1.0
   </capability>
   <capability>
     http:/example.net/router/2.3/myfeature
   </capability>
 </capabilities>
  <session-id>1043</session-id>
</hello>
```

Base Protocol Operations

The Swiss Education & Research Network

Name	Description	
get-config	Retrieve some or all of a configuration	
edit-config	Edit some or all of a configuration	
copy-config	Copy contents of one config to another	
delete-config	Remove all contents of a config	
lock	Start exclusive write access of a config	
unlock	Stop exclusive write access of a config	
get	Retrieve config and/or state data	
close-session	Cause your session to close	
kill-session	Force another session to close	

Optional Protocol Operations

The Swiss Education & Research Network

Name	Capability	Description
commit	candidate	Commit <candidate> to <running> configuration</running></candidate>
discard- changes	candidate	Clear the <candidate> configuration</candidate>
validate	validate	Perform a syntax check and optionally a referential integrity check on the specified config

Configuration Locking

Swiss Education & Research Network

- NETCONF supports global locking
 - Exclusive access to an entire configuration datastore is granted to one user even if the user only has permission to alter some of the configuration data
- Partial locking is coming
 - This feature depends on how data is named (and other factors) and the WG could not agree in time so it was shelved
- Lock implementation in mandatory but lock use is optional
 - Provides some really interesting failure modes :-)

<edit-config>

• 4 edit modes (create, merge, replace, delete)

Parameter	Description	
target	Configuration datastore to edit	
default- operation	Default edit mode; Default (merge) Values (merge, replace, none)	
test-option	Values (test-then-set, set); Default (set)	
error-option	Values (stop-on-error, continue-on-error, rollback-on-error); Default (stop-on-error)	
config	Portion of the configuration to edit	

<edit-config> Example

The Swiss Education & Research Network

```
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <edit-config>
  <target><running/></target>
  <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
   <top xmlns="http://example.com/schema/1.2/config">
    <interface xc:operation="replace">
      <name>Ethernet0/0</name>
     <mtu>1500</mtu>
     <address>
       <name>1.2.3.4</name>
       prefix-length>24</prefix-length>
     </address>
    </interface>
   </top>
  </config>
 </edit-config>
</rpc>
```

Configuration Data

- Data is divided into 2 categories
 - Configuration data is loosely defined as "the information needed by a device to achieve its desired running state" and it is saved across a device reboot
 - Status and statistical data is loosely defined as "everything else"
 - This is done to make "diff" operations easier
- A Configuration Datastore is a conceptual collection of all the configuration data needed for a particular network device
 - <candidate>, <running>, and <startup> are the standard configuration datastores

Standard Configuration Datastores

The Swiss Education & Research Networ

- <candidate>

 A scratchpad configuration used to collect edits to be applied all at once with a <commit> operation

Support for this configuration is optional

- <running>

The current operational configuration

All devices must support this configuration

- <startup>

The configuration to be used upon the next reload

 Only devices that require the <running> configuration to be manually copied to non-volatile storage support this configuration

Named Configuration Datastores

15

- An optional feature allows a configuration datastore named by a Universal Resource Locater (URL) to be used in protocol operations
 - local: file://configs/my-config.xml
 - remote: https://config.example.com/device-X
- The 'url' capability identifies which protocols the agent will allow in the URL syntax
- Remote configuration editing is possible but not encouraged
- Remote to remote file copy is not allowed

Summary

- NETCONF provides a low-level programmatic interface to manipulate network device configurations
 - Designed by network element vendor engineers to work on all the major router platforms
- NETCONF is content-neutral and only requires data model content to be well-formed XML
 - High-level object or service oriented model-driven systems can be layered on top

Active NETCONF WG Work

- The Swiss Education & Research Network
- Notifications to notify manager of asynchronous events
 - Useful (not just) for configuration
 - Two competing proposals merged at July 2006 interim
 - Subscriptions based on event streams (similar to syslog facilities) and filters

Possible Future Work

- Standard Access Control Mechanism (depends on data model)
- Granular locking (depends on data model)
- Data Modeling
 - Standard data model for device (maybe "just" "router") configuration?
 - Start with common conventions for things we think we all understand (such as an IP address)?
 - Restrict ourselves to configuration, or try to grandfather e.g. SNMP MIBs…?
- Software image management

Possible Future O&M Work

The Swiss Education & Research Network

Replace entire IETF Network Management "stack" with something based on NETCONF?

- Note that SNMP has been mapped to SSH (ISMS WG)
- Some vendors would prefer not to implement SNMP

Do operators here think this would be useful/worthwhile?